Appropriate High Viscosity

Multiples studies have identified viscosity as the most important factor influencing bone spreading cement within the vertebral body and leakage frequency. Vexim Injectable Biomaterials have been formulated to reach a minimum viscosity of 350 Pa.s at injection time. This viscosity range has been proven to clinically reduce the risk of extravasation. Above these levels, an increase of viscosity does not result in better spreading patterns or cement interdigitation.

Sustained High Viscosity

Along with the required high viscosity, enough time to control and adapt the injection to the type of pathology and fracture is required. Vexim Injectable Biomaterials have been designed to allow an appropriate preparation (mixing and filling) while avoiding any waiting time. The injection or dough phase has been designed to be exceptionally long for a comfortable management of the fixation phase even in the most complex fractures.

High Radio-opacity

Vexim Injectable Biomaterials contain Zirconium Oxide as radio-opaciant to provide state-of-the-art visibility while injected. This leads to an increased safety during injection.

REFERENCES:

10. Le moniteur HOSPITALIER n°235 Avril 2011/ IFU

Cohesion® Bone Cement { vexim BIOMATERIALS } Interface® Bone Fixation Composite
CONTINUUM OF CONTROL

Appropriate High Viscosity

Multiples studies have identified viscosity as the most important factor influencing bone spreading cement within the vertebral body and leakage frequency.\(^1\)\(^2\).

Vexim Injectable Biomaterials have been formulated to reach a minimum viscosity of 350 Pa.s at injection time. This viscosity range has been proven to clinically reduce the risk of extravasation.\(^3\) Above these levels, an increase of viscosity does not result in better spreading patterns or cement interdigitation.\(^4\)

Sustained High Viscosity

Along with the required high viscosity, enough time to control and adapt the injection to the type of pathology and fracture is required. **Vexim Injectable Biomaterials** have been designed to allow an appropriate preparation (mixing and filling) while avoiding any waiting time.

The injection or dough phase has been designed to be exceptionally long for a comfortable management of the fixation phase even in the most complex fractures.

High Radio-opacity

Vexim Injectable Biomaterials contain Zirconium Oxide as radio-opacifiant to provide state-of-the-art visibility while injected. This leads to an increased safety during injection.

REFERENCES:

10. Le moniteur HOSPITALIER n°235 Avril 2011/ IFU
Unlike SpineJack® which allows the practitioners to reduce the fracture independently of the bone quality, the fracture fixation depends on the existing bone quality.

Fixation of the fractured Vertebral Body (VB) in Vertebral Compression Fractures (VCF) deserves a different approach in trauma cases than fixation on VCF in a patient with underlying pathologies such as osteoporosis or tumors.

Vexim’s main concern is to preserve the existing structures and rely on it for the bone healing process. Thereby depending on the quality of the preserved trabecular structure acting as a scaffold, Vexim offers a range of injectable Biomaterials for fixation:

- **Cohesion® Bone Cement**
- **Interface® Bone Fixation Composite**

References: 10
Underlying pathologies in VCF affect the VB mechanical stability and its intrinsic bone osteogenesis equilibrium thus compromising the bone remodeling. In such cases, the goal is to achieve safe and long term mechanical stabilization of the SpineJack® with the Cohesion® Bone Cement.

Based on more than 50 years of excellent PMMA clinical history, Cohesion®, is a fully biocompatible high viscosity bone cement made with the latest generation of compounds.

The use of Zirconium Oxyde instead of Barium Sulfate has been shown to limit the potential of bone osteolysis, thus potentially leading to better long term results. PMMA cement is not a glue, therefore getting the best and widest possible interdigitation will optimize the fracture stabilization.
In traumatic VCF with good bone quality, the ideal fixation solution should incorporate:
- Safe and reproducible strong primary fixation.
- Strong long term osteointegration of the injected Biomaterial with the surrounding bone tissues.

Interface® Bone Fixation Composite

With only 30% of PMMA, **Interface® Bone Fixation Composite** is a proprietary formulation combining the lowest percentage of PMMA available in the market* while keeping the mechanical properties of the high viscosity Cohesion® Bone Cement.

The **Interface® Bone Fixation Composite** with 50% osteoconductive Hydroxyapatite (HA) crystal-shape particles provides a surface with a composition very similar to bone making making osteointegration possible6,7.

Interface® Bone Fixation Composite provides:
- Primary mechanical stability
- Long term biological apposition

State-of-the-art handling properties
- Sustained high viscosity.
- Long working time.
- Excellent radio-opacity.

Strong primary mechanical stabilization
- Interdigitation with trabecular structures.
- Based on Cohesion® Bone Cement experience.

Enhance biocompatibility
- Osteoconductivity: strong and direct bone apposition8.
- Tissue-friendly: reduced PMMA volume and low exothermic temperature.

Rational for the choice of 0-200 µm and Crystalline shape of HA particles:
- Right size to ensure reproducible and homogeneous mixing.
- Right shape for adequate sustained high-viscosity.
- Ideal size and shape for bone tissue apposition9.

* In this category of products
CONTINUUM OF CONTROL

Appropriate High Viscosity

Multiple studies have identified viscosity as the most important factor influencing bone spreading cement within the vertebral body and leakage frequency. Vexim Injectable Biomaterials have been formulated to reach a minimum viscosity of 350 Pa.s at injection time. This viscosity range has been proven to clinically reduce the risk of extravasation. Above these levels, an increase of viscosity does not result in better spreading patterns or cement interdigitation.

Sustained High Viscosity

Along with the required high viscosity, enough time to control and adapt the injection to the type of pathology and fracture is required. Vexim Injectable Biomaterials have been designed to allow an appropriate preparation (mixing and filling) while avoiding any waiting time. The injection or dough phase has been designed to be exceptionally long for a comfortable management of the fixation phase even in the most complex fractures.

High Radio-opacity

Vexim Injectable Biomaterials contain Zirconium Oxide as radio-opacifiant to provide state-of-the-art visibility while injected. This leads to an increased safety during injection.

REFERENCES:

10. Le moniteur HOSPITALIER n°235 Avril 2011/ IFU